Efficient quantile regression for heteroscedastic models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Quantile Regression for Heteroscedastic Models

Quantile regression provides estimates of a range of conditional quantiles. This stands in contrast to traditional regression techniques, which focus on a single conditional mean function. Lee et al. (2012) proposed efficient quantile regression by rounding the sharp corner of the loss. The main modification generally involves an asymmetric l2 adjustment of the loss function around zero. We ext...

متن کامل

Inference on Quantile Regression for Heteroscedastic Mixed Models

This paper develops two weighted quantile rank score tests for the significance of fixed effects in a class of mixed models with nonhomogeneous groups. One test is constructed by weighting the residuals to account for heteroscedasticity, while the other test is based on asymptotically optimal weights accounting for both heteroscedasticity and correlation. Without appropriate weights to account ...

متن کامل

Single index quantile regression for heteroscedastic data

Quantile regression (QR) is becoming increasingly popular due to its relevance in many scientific investigations. Linear and nonlinear QR models have been studied extensively, while recent research focuses on the single index quantile regression (SIQR) model. Compared to the single index mean regression problem, the fitting and the asymptotic theory of the SIQR model are more complicated due to...

متن کامل

Asymptotically efficient estimators for nonparametric heteroscedastic regression models

This paper concerns the estimation of a function at a point in nonparametric heteroscedastic regression models with Gaussian noise or noise having unknown distribution. In those cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.

متن کامل

Variable Selection in Single Index Quantile Regression for Heteroscedastic Data

Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic, due to its relevance in many scientific studies. The ubiquity of high dimensional data has led to a number of variable selection methods for linear/nonlinear QR models and, recently, for the single index quantile regression (SIQR) model. We propose a new algorithm for simult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Computation and Simulation

سال: 2014

ISSN: 0094-9655,1563-5163

DOI: 10.1080/00949655.2014.967244